
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Structural Simulation Toolkit
Lunch & Learn

September, 2015

Branden Moore (5638)

SST Lunch & Learn: September, 2015

SAND2015-10442R

SST Lunch & Learn

 Introduction to SST

 Examples of use at Sandia

 Framework Overview

 Building a Simulator

1

SST Lunch & Learn: September, 2015

Why SST?

 Problem: Simulation is slow
 Tradeoff between accuracy and time to simulate

 Many simulators are serial, unable to simulate very large systems

 Problem: Lack of simulator flexibility
 Tightly-coupled simulations: faster but difficult to modify

 Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:

A parallel, discrete-event simulation framework

focused on scalability and flexibility.

SST Lunch & Learn: September, 2015

2

SST Key Features

 Parallel
 Built from the ground up to be scalable
 Demonstrated scaling to 512+ processors, Millions of Components
 Supports both MPI and Thread-based parallelism

 Flexible
 Enables “mix and match” of simulation components
 Timescale agnostic (femtoseconds to years)
 Customize tradeoff between accuracy and simulation time

 E.g., cycle-accurate network with trace-driven endpoints

 Non-viral, Open Source license

 Mature, but active
 Version 5.1 Released in September, 2015
 Current SVN/git history back to 2009
 Over 117k SLOC (Core alone: ~20k SLOC)

SST Lunch & Learn: September, 2015

3

SST Project Collaboration

SST Lunch & Learn: September, 2015

4
Primary development: Sandia 1420

EXAMPLE USE CASES

SST Lunch & Learn: September, 2015

5

Case #1: Multi-level memory

SST Lunch & Learn: September, 2015

 Future memory systems will be Multi-Level Memory

 MLM can potentially offer more “usable” bandwidth, less cost

 Challenges:
 substantial software and hardware (co-)design

 no “one size fits all”

 SST can explore HW & SW organization

AMD Intel Marvell 6

5

Intel Proprietary
© 2014 Intel Corporation

The information on this page is subject to the use and disclosure restrictions provided on the cover page to
this document.

On package Memory Option

JEDEC std DRAM packaged for on-package use

Example – QDP die package

4 groups – custom POP stack

Energy - LPDDR style die (aggressive I/O power targets)

Proximity to main die to hold interface power down

8-die stack occupying remaining space of package

Analyzing Memory Accesses

 Capture post-cache accesses

 Setup:
 “Quads” of 4 cores

 Histogram generator
implemented as a prefetcher

SST Lunch & Learn: September, 2015

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Histogram

Ariel Trace Capture

PIN

l2SnoopParams = {
"prefetcher": "cassini.AddrHistogrammer",
"prefetcher.histo_bin_width": 4096,
"prefetcher.heap_begin": "1 GiB",
"prefetcher.heap_end": "9 GiB"

}

7

Irregular

Analysis: Diverse Patterns

Few, Well-defined
RegionsP

h
ys

ic
a
l
a
d
d
re

ss
 h

is
to

g
ra

m
s

Regular Irregular

Multiple
Regions

SST Lunch & Learn: September, 2015

8

Multi-Level Memory Simulation

 Multiple memory types:
 DDR DRAM (DramSim)

 HMC-like Stacked Memory (VaultSim)

 NVRAM (NVDIMMSim)

 Addresses can be interleaved, or
blocked between memory types

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR

Directory
Controller

Logic
Layer

Stacked
Vault

dc.addParams({
"addr_range_start": start_pos,
"addr_range_end": end_pos,
"interleave_size": interleave_size/1024,
"interleave_step": interleave_step,
"entry_cache_size": 128*1024,
"clock": memclock,
"network_address": netPort

})

SST Lunch & Learn: September, 2015

9

MLM Explorations

 Analysis of application
memory use distribution

 Quick exploration of “Naïve”
address assignment, capacity
ratios on performance

 Not shown: Feedback results
from histograms to determine
address assignment

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

DDR+Only" 18%"HMC"82%"DDR" 18%"HMC"36%"
DDR(cache)"64%"NV"

18%"HMC"18%"DDR"
(cache)"%"64NV"

MiniFE&Simula, ons&

Performance"

Perf/Cost"

F igur e 5: M iniFE Simulat ion r esul t s

SST Lunch & Learn: September, 2015

10

Case #2: Network

 What is the network latency achieved by different platforms
during a 3D halo exchange?
 Halo exchange: Exchange boundary data with neighbors

 Platform 1: “Fat” nodes – Eight 20TF/s cores per node

 Platform 2: “Medium” nodes – Two 20TF/s cores per node

 Platform 3: “Thin” nodes – One 10TF/s core per node

 Evaluate for 1K to 64K participating nodes

 Evaluate at three different link bandwidths
 12.5GB/s, 50GB/s, 125GB/s

SST Lunch & Learn: September, 2015

11

Network: Simulation setup

 Use Ember to model nodes
 Lightweight model focused on communication pattern

 Estimates compute time using the node’s FLOPS

 Detailed model of communication

 Enables scaling the simulated system to a larger number of nodes

 Compared to a detailed processor model + memory model

 Use Firefly to model the NIC

 Use Merlin to model the network
 Detailed, cycle-accurate models for network (routers, links, etc.)

SST Lunch & Learn: September, 2015

12

Scaling with Bandwidth

SST Lunch & Learn: September, 2015

13

Link Bandwidth = 12.5GB/s

Link Bandwidth = 50GB/s Link Bandwidth = 125GB/s

SST CORE: FRAMEWORK FOR
PARALLEL SIMULATION

SST Lunch & Learn: September, 2015

14

Key Concepts

 SST::Component

 Simulation model

 SST::Link

 Communication path between two components

 SST::Event

 A discrete event

 SST::SubComponent

 Add functionality to Components

 SST::Module

 Add functionality to framework

 Element Libraries

 Contain Components and Modules in a Shared
Library format

 Included manifest documents components,
features, parameters and interactions

S
S

T:
:L

in
k

SST::Component
CPU

EventHandler

SST::Component
Cache

EventHandler

SST::Event
Load

SST Lunch & Learn: September, 2015

15

Component

 Basic building block of a simulation model
 E.g., processor, cache, network router, etc.

 Performs the actual simulation
 Zero Simulation time while operating
 Time advances on events

 Can send events to itself for timing purposes

 Events are issued on components
 Can register Clock Events
 Receive events over links

 Communicate with other components
 Components define ports, links connect ports between components
 Polled: Register a clock handler to poll the link
 Interrupt: Register an event handler to be called when an event arrives
 Both: Receive events on interrupt, send events on clock

 SubComponents and Modules provide additional functionality

SST Lunch & Learn: September, 2015

16

Link

 Connects two components
 Connect a specific “Port” on component A to a “Port” on component B

 The ONLY mechanism by which components communicate
 Necessary for parallel simulation

 Has a minimum, non-zero latency for communication
 Except self-links
 Except during initialization

 Transparently handles any MPI communication

Component A Component B

P
o

rt
 X

P
o

rt
 Y

Link 1

SST Lunch & Learn: September, 2015

17

Event

 Unit of communication between two components
 Packet format is up to the communicating components

 Base class is SST::Event

 Has a delivery time
 Typically calculated from a link

 Can specify priorities.

 Some standardized interfaces
 Facilitate “mix and match” capability

 sst/core/interfaces/

 Memory (simpleMem)
 Defines commands & event format for communication with memory

 Network (simpleNetwork)
 Defines a header for events sent through a network component

SST Lunch & Learn: September, 2015

18

SST’s discrete-event algorithm

 Simulations are comprised of components connected by links

 Components interact by sending events over links

 Each link has a minimum latency

 Components can load subComponents and modules for
additional functionality

SST Lunch & Learn: September, 2015

Component Component

SST Core

Configuratio
n

Parititioning

Link

Event

Instantiation Time
Coordination

Parallel
Communication

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: NoC

Router

SST
Component
Type: NoC

Router

SST Link
Latency: 1ns

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST Link
Latency: 1ns

S
S

T
 L

in
k

L
a
te

n
c
y
:
4
n
s

19

Simulation lifecycle

 Birth
 Create graph of components using Python configuration file

 Partition graph and assign components to parallel ranks

 Instantiate components

 Connect components via links

 Initialize components using their init() functions

 Setup components using their setup() functions

 Life
 Send events

 Synchronization between parallel ranks (hidden from user)

 Manage clock and event handlers

 Death
 Finalize components using their finish() functions

 Output statistics

 Cleanup simulation, delete components

SST Lunch & Learn: September, 2015

20

SST in parallel
 SST was designed from the ground up

to enable scalable, parallel simulations
 Conservative, Distance-based

Optimization strategy

 Components are distributed among
MPI ranks and Threads

 Links enable parallelism
 Components only communicate via links

 Specified link-latency determines
synchronization rate

 Transparently handle any MPI
communication & thread synchronization

 Multiple partitioning strategies
 Linear, RR, “Simple”, Zoltan-based

 Simulation writer can provide own
partitioning

MPI Rank 0

MPI Rank 0 MPI Rank 1

Thread 0Thread 0 Thread 1Thread 1

Comp0 Comp2

Thread 0Thread 0 Thread 1Thread 1

Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file

SST Lunch & Learn: September, 2015

21

SST FOR BUILDING SIMULATORS

SST Lunch & Learn: September, 2015

22

What makes a Simulator?

 Simulation Engine
 Handle events, communication between components

 Simulation Models
 Perform actual simulation / emulation

 System Construction
 Connect models together, configure the system to simulate

23

SST Lunch & Learn: September, 2015

SST Core

Element Libraries

Python Module

SST as a Framework

 Framework Provides:
 Mature PDES Engine

 Serial or parallel (Multi-Thread and Multi-Rank)

 Optimizations for very large simulators

– “Sleeping” components

– Shared Memory Lookup Tables

– Memory Management

 API for building simulation components

 Manifests for documentation

 Utilities for common simulation challenges

– Parameters/Configuration, Statistics gathering, repeatable PRNG

 Python Module for building Simulators

 Configure Components and Links via Python scripts

 Supports embedding additional modules in Element Libraries

24

SST Lunch & Learn: September, 2015

Sandia-provided Models

 Processors

 Ariel – PIN-based

 Prospero – Trace-based

 Miranda – Pattern-based

 Memory

 MemHierarchy – Caches,
“Main Memory”

 VaultSimC - Stacked memory

 Cassini – Cache prefetchers

 Network driver

 Ember – Pattern-based

 Firefly – communication
protocols

 Hermes - MPI-like driver
interface

 Zodiac – trace-based

 Network models

 Merlin – HPC Network
simulator

 Other

 Scheduler

 simpleElementExample

SST Lunch & Learn: September, 2015

25

Building custom Components

 Create a C++ class which inherits from ‘SST::Component’
 Constructor:

 Will be passed an SST::Params object with configuration information

 Registers any clocks and their event handlers

 Configures links with event handlers

 Initialization phase:
 Can pass data to peers (pre-fill memory, establish global state)

 Run time:
 Respond to events (clocks, links)

 Simulate target model

 Send new events

 Record statistics

 Build an Element Library to describe this component (or group of
components)

26

SST Lunch & Learn: September, 2015

Element libraries

 Collection of related components, subComponents, and
modules

 Includes a manifest
 Declares how to create new component instances

 Documents Components, Parameters, Ports and Statistics

 Implemented as a Shared Library with a well-known symbol
for the Manifest

 SST comes with many built-in libraries from Sandia
 Processors, memory, network, etc.

 Tested for inter-library compatibility

SST Lunch & Learn: September, 2015

27

Building a Simulator

 SST provides a Python Module
with an API to connect and
configure simulation components
to build a simulator
 import sst

 At run time:
 sst ‘mySim.py’
 SST will launch Python interpreter,

and execute ‘mySim.py’
 Script should instantiate all needed

components, and provide their
parameters

 Command-line arguments can be
passed to the interpreter

 --model-options “-a -b 5”

 Normal python interpreter
functionality available

 import getopt
 import antigravity

import sst

Define the simulation components

comp_msgGen0 = sst.Component("msgGen0”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen0.addParams({

"outputinfo" : 0,

"sendcount" : 10000,

"clock" : "1MHz"

})

comp_msgGen1 = sst.Component("msgGen1”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen1.addParams({

"outputinfo" : 0,

"sendcount" : 100000,

"clock" : "1MHz"

})

myLink = sst.Link("myLink")

myLink.connect((comp_msgGen0, "remoteComponent", "1us"),

(comp_msgGen1, "remoteComponent", "1us"))

SST Lunch & Learn: September, 2015

28

Python Module – Defining
Components
 Define: sst.Component(“name”, “type”)

 Configure: addParams ({ “parameter” : value, … })

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B”
“topology” : “merlin.singlerouter”,
“id” : 0,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Instance name Component type

Parameters

SST Lunch & Learn: September, 2015

29

Element Library

Python Module – Defining Links

 Example: Connect an L2 cache (l2cache0) to network
 Create a link: sst.Link(“name”)

 Define link endpoints: connect(endpoint1, endpoint2)

 Endpoint is defined as: (Component, Port, Latency)

 Note: Latencies of the two endpoints can differ

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “500ps”),
(network, “port0”, “1ns”))

…

Link name

Endpoints

SST Lunch & Learn: September, 2015

30

SSTInfo: Getting component info

 Prints parameters, port names, statistics, …

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
==
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific component

Parameter Definition

“REQUIRED” or
default value

Port name

Definition

Type of event(s) used on the link

SST Lunch & Learn: September, 2015

31

Running SST

 Usage: sst [options] configFile.py

 Common options:
-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple |
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in
“Dot” format to <filename>

SST Lunch & Learn: September, 2015

32

Finally…

 SST Wiki: http://www.sst-simulator.org/
 Downloading, installing, and running SST

 Element libraries and external components

 Guides for extending SST

 Information on APIs

 Information about current development efforts

 Mailing lists:
 sst-user: For questions on building, compiling, extending, and using SST

 sst-developer: For questions on developing SST components

 sst-announce: Release announcements

 sst-commit: Notification of commits to the SVN repository

 Subscribe via the wiki

SST Lunch & Learn: September, 2015

33

http://www.sst-simulator.org/
http://www.sst-simulator.org/
http://www.sst-simulator.org/

THANK YOU

SST Lunch & Learn: September, 2015

34

Backup

SST Lunch & Learn: September, 2015

35

Ariel: PIN-based processor

 Lightweight processor core model

 Uses Intel’s PIN tools and XED decoders to analyze binaries
 Runs x86, x86-64, SSE/AVX, etc. compiled binaries

 Supports fixed thread count parallelism (OpenMP, Qthreads, etc.)

 Passes information to virtual core in SST

 Implements SST’s memory interface to interact with a
memory model

SST Lunch & Learn: September, 2015

36

Ariel: The tradeoff

 Pros:
 Faster than cycle-accurate processor models (e.g., Gem5)

 Reasonable approximation for studies on memory system
performance

 Especially for heavily memory-bound applications

 Reasonable model of thread interactions

 Cons
 Slower than trace/pattern-based processor models

 Does not give cycle-reproducible results

 Use of threads can disturb reproducibility

 Non-deterministic results

 Not compatible with non-x86 binaries

SST Lunch & Learn: September, 2015

37

Ariel: Architecture

User Application
Binary

Ariel PIN Tool

…

(Instruction Stream
1 per thread)

…

Virtual “Ariel” Core

Virtual “Ariel” Processor

(memEvent Target)

SST Ariel Component

…

memHierarchy Cache
…

…

Unmodified user binary
(use your standard compiler etc)

SST Lunch & Learn: September, 2015

38

Ariel: Details

 Ariel’s virtual cores
 Instruction information currently limited to memory ops or instructions

with no memory operands

 Clocked: Reads instruction stream in chunks but processes on clock

 Back pressure from FIFO halts real binary execution

 Does not maintain dependence order or register locations (yet)!

 Performs a TLB mapping of virtual-to-physical addresses

 Key user knobs
 Memory ops issued/cycle

 Load/store queue size

 Memory interface
 Generates memEvents which can be sent to a cache model

 Tracks basic statistics (request counts, split-cache line loads, etc.)

SST Lunch & Learn: September, 2015

39

Prospero: Trace-based processor

 Trace-based processor model
 Reads memory ops from a file and passes to the simulated memory

system

 “Single core” but can use multiple trace files to emulate threaded or
MPI-style applications

 Supports arbitrary length reads to account for variable vector widths

 Performs “first touch” virtual to physical mapping

 Comes with Prospero Trace Tool to generate traces
 Or can generate your own and translate to Prospero’s format

SST Lunch & Learn: September, 2015

40

Prospero: The tradeoff

 Pros
 Faster than Ariel and Gem5

 Provided you can get a trace

 Good for heavily memory-bound applications

 Reasonable approximation to memory system performance

 Cons
 Traces can be very large

 Requires good I/O system to store and read the trace

 Traces are less flexible than actual execution

 Capture a single execution stream using a single application input

SST Lunch & Learn: September, 2015

41

Miranda: Pattern-based processor

 Extremely light-weight processor model
 Generates specific memory address patterns

 Current patterns
 Strided accesses (single stream)

 Forward and reverse strides

 Random accesses

 GUPS

 STREAM benchmark

 In-order & out-of-order CPU

 3D stencil

 Sparse matrix vector multiply (SpMV)

 Copy (~array copy)

SST Lunch & Learn: September, 2015

42

Miranda: The tradeoffs

 Pros
 Very lightweight – no binary, no trace

 Good for applications whose address patterns are predictable

 E.g., not much pointer-chasing

 Cons
 Need a generator for the memory pattern of interest

 Requires a good understanding of the pattern

SST Lunch & Learn: September, 2015

43

MemHierarchy: Memory system

 Cycle-accurate cache and memory simulation
 Inter- and intra-socket coherence

 Multiple main memory models

 Highly configurable
 Can model any number of caches (L10s!)

 Arbitrary topologies, multiple memories

 Single- and multi-socket configurations

 Capable of modeling modern memory hierarchies
 Intel core i7, Xeon Phi

 Arm Cortex A8, A7, A15, A53, A57

 SPARC T6

SST Lunch & Learn: September, 2015

44

MemHierarchy: Components

 Cache
 Includes coherence protocols (MSI, MESI, etc.)

 Bus

 Directory controller
 Inter-socket coherence

 Memory controller
 Backs up simulated memory, interfaces with memory backends

 Memory backends
 Main memory simulators for DRAM, stacked DRAM, NVRAM, etc.

 TrivialCPU & StreamCPU
 Very simple memory request generators for testing

SST Lunch & Learn: September, 2015

45

MemHierarchy: Caches

 Store actual data

 Set associative, configurable replacement policies
 LRU, LFU, Random, MRU, NMRU (not MRU)

 Use MSHRs to buffer outstanding requests

 Can communicate via a direct link or over a bus or network
 Implements simpleNetwork interface via the “MemNIC” module

 Can model a single shared cache or multiple cache slices

 Handles atomics, LLSC, non-cacheable requests, etc.

 Prefetch capability by using the Cassini element library

SST Lunch & Learn: September, 2015

46

MemHierarchy: Cache structure

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in

the MSHRs
• Manages cache allocations and

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events

• Forwarded requests, responses, etc.
• Decides when events need to stall

MSHRs
• Buffers stalled

and blocked
events

CacheArray
• Stores cache lines –

data and coherence
state

• Replacements via the
replacement policy
manager

SST Lunch & Learn: September, 2015

47

MemHierarchy: Main memory

 MemoryController
 Contains a ‘backing store’ for simulated data

 Can communicate over a network or via a direct link with a cache or
directory

 Interfaces with multiple memory backends

 Available backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM

SST Lunch & Learn: September, 2015

48

Merlin: Network simulator

 Low-level, flexible networking components that can be used
to simulate high-speed networks (machine level) or on-chip
networks

 Capabilities
 High radix router model (hr_router)

 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy

 Lightweight network endpoint models (Ember – coming up next)

 Or, make your own

SST Lunch & Learn: September, 2015

49

Ember: Network traffic generator

 Light-weight endpoint for modeling network traffic
 Enables large-scale simulation of networks where detailed modeling

of endpoints would be expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the patterns

 Generic method for users to extend SST with additional
communication patterns

 Intended to be a driver for the Hermes, Firefly, and Merlin
communication modeling stack
 Uses Hermes message API to create communications

 Abstracted from low-level, allowing modular reuse of additional
hardware models

SST Lunch & Learn: September, 2015

50

Ember: Overview

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

SST Lunch & Learn: September, 2015

51

Ember: Motifs

 Motifs are lightweight patterns of communication
 Tend to have very small state

 Extracted from parent applications

 Models as an MPI program (serial flow of control)

 Many motifs acting in the simulation create the parallel behavior

 Example motifs
 Halo exchanges (1, 2, and 3D)

 MPI collections – reductions, all-reduce, gather, barrier

 Communication sweeping (Sweep3D, LU, etc.)

SST Lunch & Learn: September, 2015

52

Ember: Motifs (continued)

 The EmberEngine creates and manages the motif
 Creates an event queue which the motif adds events to when probed

 The Engine executes the queued events in order, converting them to
message semantic calls as needed

 When the queue is empty, the motif is probed again for events

 Events correspond to a specific action
 E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

SST Lunch & Learn: September, 2015

53

Firefly: Network traffic

 Purpose: Create network traffic, based on application
communication patterns, at large scale
 Enables testing the impact of network topologies and technologies on

application communication at very large scale

 Scales to 1 million nodes

 Supports multiple “cores” per Node
 Interaction between cores limited to message passing

 Supports space sharing of the network
 Multiple “apps” running simultaneously

SST Lunch & Learn: September, 2015

54

Firefly: Simulating large networks

 A network node consists of
 Driver (the “application”)

 NIC

 Router

 Nodes are connected together via
the routers to form the network
 Fat tree, torus, etc.

 Firefly is the interface between the
driver and the router
 Message passing library  Firefly

Hades

 NIC  Firefly NIC

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router

SST Lunch & Learn: September, 2015

55

Scheduler

 Models HPC system-wide job scheduling

 Three components
 Sched: schedules and allocates resources for a stream of jobs

 Node: runs scheduled jobs on their allocated resources

 FaultInjection: injects failures onto the resources

 The scheduler is currently a stand-alone element library
 The schedComponent and nodeComponent must be used together

 The faultInjectionComponent is optional

SST Lunch & Learn: September, 2015

56

